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Abstract. A new efficient branch and bound method is proposed for solving convex programs
with an additional monotonic nonconvex constraint. Computational experiments demonstrated that
this method is quite practical for solving rank k reverse convex programs with much higher values
of k than previously considered in the literature and can be applied to a wider class of nonconvex
problems.
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1. Introduction

Despite the difficulties of global optimization, significant progress has been achieved
in recent years in the study of specially structured and yet important global
optimization problems arising from applications. For instance, efficient decomposi-
tion methods are now available for solving many low rank nonconvex minimization
problems, in which the objective function is quasiconcave and monotone increasing
along any halfline parallel to a ray in the nonnegative orthant (see e.g. [2] and [9]).

In the present paper we will be concerned with the following problem

maxhkc, xl u x [ D, w( g(x)) < 1j (Q)

n n mwhere D is a compact convex set in R , g : R → R is a component-wise convex1 11
m mmapping and w : R → R is a lower semi-continuous function, increasing on R , in1 1

the sense that w( y9) > w( y) whenever y9 > y. Of course, the last constraint
w( g(x)) < 1 constitutes the main source of difficulty because without it problem (Q)
would merely reduce to a convex program. A particular case which has already been

mstudied in the literature is when w( y) 5 p y . The constraint set is theni51 i

m5x [ D* P y < 1, g (x) < y (i 5 1, . . . , m)6i i i
i51

m

and since the set hy u p y > 1j is convex, the problem is a convex program with ani
i51

additional reverse convex constraint. For this class of problems several solution
methods are available, some of which quite efficient if m < 5 [3–7]. Of particular
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interest is the outer approximation method in [4] (see also [2, 9]), which can also be
extended to problems with reverse convex constraints of a more general type than
convex multiplicative constraints. However, to our knowledge so far no author has
considered monotonic constraints described by means of arbitrary increasing
functions w(?).

Although nonconvex, the (lower) level sets of increasing functions enjoy a nice
property analogous to the separation property of convex sets. Namely, whereas a
convex set can be separated from any point outside by a halfspace, a level set of an
increasing function can be separated from any point outside by a translate of the
positive orthant. Using this specific separation property, a method analogous to the
standard outer approximation method for convex maximization over convex sets
(see e.g. [2] and [9]) was developed in [8] for maximizing an increasing function
over a level set of another increasing function. Preliminary computational results
suggested that the method is quite practical and could open the way to new
promising developments of global optimization focussed on exploiting monotonicity
properties.

It turns out that problem (Q) can be converted to a problem essentially of the
same type as the one investigated in [8]. This allows problem (Q) to be approached
by the same outer approximation method as was developed in the latter paper. Close

mscrutiny showed that when applied to problems with w( y) 5 p y , our methodi51 i

coincides basically with the outer approximation method RECT of Kuno et al. [4]
for convex programs with an additional constraint on the product of several convex
functions. In fact, both methods use the same separation property of the feasible set
to approximate the latter by a sequence of sets which are unions of rectangles (i.e.
‘polyblocks’, following the terminology introduced in [10]). In the sequel, however,
we shall describe our method as a branch and bound rather than an outer
approximation procedure, using the simple observation that if f(x) is an increasing

nfunction on R then an upper bound of f(x) over the feasible solutions contained in a1
nbox [a, b] 5 hx [ R u a < x < bj is obviously f(b). Aside from being applicable to a

wider range of problems, the present method differs from the method in [8] or
RECT in [4] in several important aspects: (1) no special manipulation is required for
the convergence of the algorithm, (2) a more systematic and efficient procedure is
used for computing the new vertices of the current outer approximating polyblock
(in particular, improper vertices and vertices no longer of interest are discarded, thus
avoiding unnecessary computations), (3) a more rigorous theoretical foundation is
provided, (4) reoptimization techniques are employed in solving the linear subprob-
lems, to save computational efforts, and (5) restarts are made possible, to overcome
memory space limitations and enhance computational efficiency.

Just as the earlier outer approximation method in [8], the present branch and
bound method is a specialized version of a very general approach to monotonic
optimization [10]. It is easy to implement and when applied to convex programs
with an additional convex multiplicative constraint it seems to outperform most
existing methods.
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The paper is organized as follows. After the Introduction we shall describe in
Section 2 preliminary transformations to reduce the problem to maximizing an
increasing function over the level set of another increasing function. Section 3 is
devoted to an analysis of basic properties of the objective function and the constraint
set which can be exploited for devising efficient solution strategies. Section 4
describes the branch and bound method proposed for the solution of the problem.
Section 5 discusses some features useful for the implementation, while Section 6
illustrates the Algorithm on selected numerical examples. Finally, we close the
paper with a report on preliminary computational experiments.

2. Preliminary Transformations

For the sake of convenience let us reformulate the problem:

maxhkc, xl u x [ D, w( g(x)) < 1j (Q)
nwhere D is a compact convex set in R , g 5 ( g , . . . , g ) with each g : D → R ,1 m i 11

mi 5 1, . . . , m, being a continuous convex positive-valued function, and w : R → R is1
m ma lower semi-continuous function, increasing on R , i.e. such that for all y, y9 [ R :1 1

y > y9 ⇒ w( y) > w( y9) . (1)

We also assume, naturally, that

w(0) , 1 . (2)

We first make some preliminary remarks and show how to convert the problem into
a form exhibiting monotonicity not only in the constraints but also in the objective
function.

LEMMA 1. Under the stated assumptions, the feasible set of the problem (Q) is
compact.

k kProof. Consider any sequence hx j of feasible solutions. Since x [ D and D is
k k 0q qcompact, there exists a subsequence hx j such that x → x [ D. By continuity of

k 0 kq qg(x) we have g(x ) → g(x ), then, since w( g(x )) < 1, the lower semicontinuity of
0 kqw( y) implies that w( g(x )) < lim inf w( g(x )) < 1. Therefore, any sequence of

feasible solutions contains a subsequence converging to a feasible solution. h

Thus, the problem (Q) is either infeasible or has a finite optimal solution. Define
m mC 5 g(D) 1 R 5 hy [ R u y > g(x) for some x [ Dj (3)1 1

suphkc, xl u x [ D, g(x) < yj if y [ C
u( y) 5 (4)H2M if y [⁄ C

where M is an arbitrary positive number such that 2M , minhkc, xl u x [ Dj. Clearly
mu( y) , 1` ;y [ R and 2M ,u( y) if and only if y [ C.1
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mLEMMA 2. The set C is convex, closed, and the function u( y) is increasing on R ,1

upper semi-continuous and concave on C.
k k 0 k k kProof. Let y [ C, y → y . Then y > g(x ) for some x [ D. Since D is

k 0compact, we can assume, by passing to a subsequence if necessary, that x → x [
0 0 0D, hence, by continuity of g(x) : y > g(x ), i.e. y [ C. Therefore, C is closed. The

convexity of C is obvious. To prove that u( y) is increasing, just observe that if
y < y9 and y [⁄ C then u( y) 5 2M so u( y9) >u( y); whereas, y9 > y [ C implies that
y9 [ C and hx [ D u g(x) < yj , hx [ D u g(x) < y9j, hence u( y) <u( y9). To see that

1 2 iu( y) is concave on C, let y , y [ C, a [ [0, 1] and for each i 5 1, 2 let kc, x l 5
i 1 2 1: :maxhkc, xl u x [ D, g(x) < y j. Then y 5 ay 1 (1 2 a)y [ C, x 5 ax 1 (1 2

2 1 2 1 2 1a)x [ D, g(ax 1 (1 2 a)x ) < ay 1 (1 2 a)y 5 y, hence u( y) > c(ax 1 (1 2
2 1 2a)x ) 5 au( y ) 1 (1 2 a)u( y ). Finally, to show the upper semi-continuity of u( y)

k 0 k k k kconsider any sequence y → y such that y [ C, and let u( y ) 5 kc, x l with x [ D
k k k 0satisfying g(x ) < y . Since D is compact, we can assume that x → x [ D, so that

k 0 0 0 0g(x ) → g(x ) < y by continuity of g(x), hence y [ C, which implies that kc, x l <
0 k 0u( y ), and consequently, lim sup u( y ) <u( y ), as desired. h

PROPOSITION 1. Problem (Q) is equivalent to

mmaxhu( y) u w( y) < 1, y [ C , R j (MQ)1

mwhere both u( y) and w( y) are increasing functions on R .1

Proof. We observe that (Q) is equivalent to the problem

maxhkc, xl u x [ D, g(x) < y, w( y) < 1j . (5)

Indeed, if x [ D, g(x) < y and w( y) < 1, then w( y) > w( g(x)), hence w( g(x)) <

w( y) < 1, i.e. the feasible set of (Q) is actually the same as that of (5). It remains to
¯show that in turn (5) is equivalent to (MQ). But if y is an optimal solution of (MQ)

¯ ¯ ¯ ¯ ¯ ¯ ¯then w(y ) < 1 and y [ C, hence u(y ) 5 kc, x l for some x [ D, such that g(x ) < y.
¯ ¯ ¯This implies that u(y ) < maxhkc, xl u x [ D, g(x) < y, w(y ) < 1j. The converse is true

because for any feasible solution x of (5) we have x [ D, g(x) < y, w( y) < 1, hence y
¯is feasible to (MQ) and kc, xl <u( y) <u(y ). h

3. Basic Properties
1 2 m 1 2Given two points y , y in R such that y < y we write

1 2 1 2 1 2 1 2[y , y ] 5 hy u y < y < y j , ( y , y ] 5 hy u y , y < y j .

PROPOSITION 2. We have g(D) , [a, b], where for i 5 1, . . . , n:

0 , a < minhg (x) u x [ Dj < maxhg (x) u x [ Dj < b , 1` .i i i i

Proof. Immediate, since g(D) is compact, as we already saw. h
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m:From b > g (x) ;x [ D it follows that b [ C 5 g(D) 1 R and hence u(b) .i i 1

2M. Furthermore, if minhg (x) u x [ Dj 5 maxhg (x) u x [ Dj 5h for some i then anyi i i

feasible solution x of (Q) satisfies g (x) 5h , so the constraint y 5h can be addedi i i i

to problem (MQ), i.e. the number of variables in (MQ) can be reduced by 1.
Therefore, without loss of generality we can assume minhg (x) u x [ Dj ,i

maxhg (x) u x [ Dj ;i 5 1, . . . , m. The problem can now be written asi

maxhu( y) u y [ C > Gj , (MQ)

where

m mC 5 g(D) 1 R , G 5 hy [ R u w( y) < 1j . (6)1 1

Since w( y) is lower semi-continuous, G is closed. The next properties of G (see (6)),
even though very simple, will be fundamental for the solution method to be
proposed.

PROPOSITION 3. The sets C and G satisfy

y [⁄ C ⇒ y9 [⁄ C , ;y9 [ [0, y] (7)

y [ G ⇒ y9 [ G , ;y9 [ [0, y] . (8)

Proof. If y9 [ C, i.e. y9 > g(x) for some x [ D then y > y9 implies that y > g(x)
for the same x, hence y [ C. This proves (7). To prove (8) observe that if y > 0,
w( y) < 1 and 0 < y9 < y then obviously w( y9) < w( y) < 1. h

The properties (8)-(7) are expressed by saying that G is a normal set and C a
mreverse normal set. A point y [ R is called an upper boundary point of G if1

ly [ G ;l [ [0, 1) but ly [⁄ G ;l . 1. The set of all upper boundary points of G is
1called the upper boundary of G and denoted by  G.

m 1PROPOSITION 4. For every y [ R \G the ray from 0 through y meets  G at a1

unique point p( y), defined by

p( y) 5 my with m 5 maxha u ay [ Gj . (9)

Proof. Since w(0) , 1 (see (2)) while w( y) . 1 because y [⁄ G and the function
a°w(ay) is lower semi-continuous and increasing for a . 0, the set ha u w(ay) < 1j
is a segment. Hence, m 5 maxha u w(ay) < 1j exists and is unique. h

mPROPOSITION 5. Let K 5 hy [ R u y . z ;i [ I(z)j, where I(z) 5 hi u z . 0j.z 1 i i i
1Then z9 [⁄ K for any z, z9 [  G.z

Proof. For every y [ K we have y . z ;i [ I(z), hence, y > lz for some l . 1.z i i
1But, since z [  G, it follows that lz [⁄ G, i.e. w(lz) . 1. Consequently, w( y) >

1w(lz) . 1. But z9 [  G implies that w(z9) 5 1, hence z9 [⁄ K . hz
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mPROPOSITION 6. If y [⁄ G then y [ K , R \G. Hence,p ( y) 1

mG 5 > (R \K ) . (10)1 z
1z[ G

Proof. As we saw from the proof of Proposition 5, w( y9) . 1 ;y9 [ K , hencep ( y)
mK , R \G. To prove (10) denote by G9 the set on the right-hand side of (10). Ifp ( y) 1

1y [⁄ G then y [ K , where p( y) [  G, i.e. y [⁄ G9. Therefore, G9 , G. Thep ( y)
m 1converse inclusion is plain because G , R \K ;z [  G. h1 z

The properties of G as a normal set (expressed in Proposition 6) are similar to
corresponding properties of convex sets, except that, while the separation for a
convex set is achieved with the help of supporting halfspaces, it is achieved for a
normal set by means of translates of the orthant. This gives the basis for an outer
approximation method for solving (Q) similar to the method proposed in [8].

We now show some properties of u( y) (as an increasing function) which suggest
a branch and bound method for solving (Q).

Let us agree to call polyblock in [0, b] any set P which is the union of a finite
number of boxes [0, y], y [ T, where T , [0, b]. The vectors in T are called the
vertices of the polyblock P 5 < [0, y]. A vertex y is said to be improper if it isy[T

dominated by some other vertex, i.e. if there exists y9 [ T \hyj such that [0, y] ,
[0, y9]. Of course, an improper vertex can be deleted without changing the
polyblock.

PROPOSITION 7. Let P be a polyblock covering C > G (the feasible set of
problem (MQ)) and let V be the set of all proper vertices of P that belong to C.
Then the polyblock with vertex set V still covers C > G and an upper bound of u(.)
over C > G is given by maxhu( y) u y [V j.

Proof. If y [⁄ C, i.e. if hx [ D u g(x) < yj 5 5, then for every y9 [ [0, y] we also
have hx [ D u g(x) < y9j 5 5, i.e. y9 [⁄ C. Therefore, [0, y] > C 5 5 for all y [⁄ C. The
conclusion follows by noting that the maximum of u(.) over any box [0, y] is
obviously u( y). h

Now, with the notations of Proposition 7 suppose that y [V \G and let z 5 p( y).
iSince y > a . 0 (Proposition 2), we have 0 , z , y. Let e be the ith unit vector of

mR .1

PROPOSITION 8. Let y [ [0, b] and 0 , z , y. Then [0, y]\K is a polyblock withz

vertices

i iz 5 y 2 ( y 2 z )e , i 5 1, . . . , m . (11)i i

m mProof. Let H 5 hu [ R u u . z j. Since K 5 > H we have [0, y]\K 5i 1 i i z i51 i z
m m m m i< ([0, y] u\H ) 5 < hu [ R u u < z , u < y ; j ± ij 5 < [0, z ]. hi51 i i51 1 i i j j i51
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1 mCOROLLARY 1. The polyblock with vertex set (V \hyj) < hz , . . . , z j still covers
C > G but does not contain y.

Thus, giving any polyblock covering C > G, and a proper vertex y [ C\G, we
can construct a smaller polyblock still covering C > G but excluding y.

4. Solution Method

For any given « > 0, we wish to find an «-optimal solution of (MQ), i.e. a feasible
¯solution y of (MQ) such that

¯u(y ) > maxhu( y) u y [ C > Gj 2 «

¯ ¯ ¯ ¯ ¯By (4) we then have u(y ) 5 kc, x l for some x [ D satisfying g(x ) < y and hence
¯ ¯w( g(x )) < 1, so x is a feasible solution of (Q) such that

¯kc, x l > maxhkc, xl u x [ D, w( g(x)) < 1j 2 « ,

¯i.e. x solves (Q) with tolerance «.
Based on the properies discussed in the preceding section, a branch and bound

method for solving (Q) with tolerance « can be outlined as follows.
1 1Start with the polyblock P 5 [0, b] . C > G with vertex set T 5 hy j, y 5 b,1 1

1 1 1T 5V . If y 5 b [ G, b solves (Q). Otherwise, we can compute z 5 p( y ) [ G. If1 1
1 1 1 1¯ ¯z [ C let y 5 z , g 5u(y ). Otherwise, let g 5 2M. An upper bound for u(.)1 1

over the feasible set is
1u( y ) 5 maxhu( y) u y [V j .1

At iteration k we have a polyblock P 5 > [0, y] . C > G with vertex set T .k y[T kk

For each box [0, y], y [ T , an upper bound of u(.) over the feasible points in thisk

box is u( y). Also a ‘current best value’ g is known, along with a ‘current bestk
k k¯ ¯solution’ y [ G with u(y ) 5 g if g . 2M. Let V be the set that remains from Tk k k k

k¯after removing the improper elements and all y such that u( y) <u(y ) (including
points y [⁄ C, i.e. points y with u( y) 5 2M). Choose

ky [ argmaxhu( y) u y [V j .k

k k k,i k k k iCompute z 5 p( y ), and the points y 5 y 2 ( y 2 z )e , i 5 1, . . . , m. By Corol-i i
k k,ilary 1, the polyblock P with vertex set T 5 (V \hy j) < hy u i 5 1, . . . , mj stillk11 k11 k

kcovers C > G but is smaller than P because y [⁄ P . Determine the new currentk k11
k11¯best value g and current best solution y and repeat the procedure with P ink11 k11

place of P .k
k k¯Clearly the sequence u( y ) is decreasing, while u(y ) is increasing. The

k k k¯ ¯procedure is stopped when u( y ) 2u(y ) < « (then y is an «-optimal solution) or
k¯V 5 5 (then y is an exact optimal solution of (MQ) if g . 2M, or the problem isk k

infeasible if g 5 2M).k
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In a formal way, we can state:

ALGORITHM Initialization. Take a, b such that 0 , a < minhy u y [ g(D)j <i i

maxhy u y [ g(D)j < b , i 5 1, . . . , m. If w(a) . 1, the problem is infeasible. Ifi i
1w(b) < 1, b is an optimal solution. If w(a) < 1 , w(b), let P 5 [0, b], y 5 b,1

1 1 1 1 1 1 1 1¯ ¯T 5V 5 hy j, z 5 p( y ). If z [ C, let y 5 z , g 5u(y ); if z [⁄ C, let g 5 2M.1 1 1 1

Set k 5 1.
k k k¯ ¯Step 1. If u( y ) 2u(y ) < «, terminate: y is an «-optimal slution.

Step 2. Compute

k,i k k k iy 5 y 2 ( y 2 z )e i 5 1, . . . , m (12)i i

and set
k k,1 k,mT 5 (V \hy j) < hy , . . . , y j . (13)k11 k

Step 3. For every new y [ T solve the convex programk11

maxhkc, xl u x [ D, g(x) < yj (14)

to obtain u( y). Let V be the set that remains from T after removing allk11 k11
k¯improper vertices and all vertices y such that u( y) <u(y ).

k¯Step 4. If V 5 5 terminate: y is optimal if g . 2M, or the problem is infeasiblek11 k

if g 5 2M.k

Step 5. If V ± 5, computek11

k11y [ argmaxhu( y) u y [V j (15)k11

k11 k11 k11m 5 maxha u w(ay ) < 1j , z 5 m y . (16)k11 k11

k11 k11 k k11¯ ¯ ¯Let y 5 argmaxhu(z ), u(y )j, g 5u(y ).k11

Set k←k 1 1 and return to Step 1.

THEOREM 1. If the above Algorithm is infinite, each of the generated sequences
k khy j and hz j contains a subsequence converging to an optimal solution.
Proof. We first show that there is a sequence hk j , h1, 2, . . .j such thatq

k kq qlim ( y 2 z ) 5 0 . (17)
q→1`

k k k k kSince z 5 l y , i.e. y 2 z 5 (1 2 l )y with 0 , l < 1, this amounts to sayingk k k

that 1 2 l → 0 for some sequence hk j , h1, 2, . . .j. Suppose this is not true, sok qq
kthere is h . 0 such that 1 2 l >h . 0 ;k. By Proposition 2, y > a . 0 ;k becausek

ky [ C ;k. Hence
k k ky 2 z >hy >ha . 0 ;i 5 1, . . . , m , ;k 5 1, 2, . . . . (18)i i i i

1 kNow the branching process can be represented by a tree rooted at y 5 b. A node y
k,iof this tree is connected to its successors y , i 5 1, . . . , m defined by (12). Consider
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k k k k1 2 p 1any path on this tree passing through y , y , . . . , y , where y 5 b and for
k kq11 qq 5 1, . . . , p 2 1, y is a successor of y , i.e.

k k k k iq11 q q q qy 5 y 2 ( y 2 z )ei iq q

for i [ h1, . . . , mj. By virtue of (18) this yields, for q 5 1, 2, . . . , p 2 1:q

>ha i 5 ii qk kq q11y 2 y (19)Hi i 5 0 i ± iq

Let i 5 1 for N values of q. Then by adding all the inequalities (19) for i 5 1 weq 1

have
p21

k k kp q q11b 2 y 5 O ( y 2 y ) > N ha .1 1 1 1 1 1
q51

kpSince b 2 y < b this implies N ha < b , i.e. N < b /(ha ). Analogously, N <1 1 1 1 1 1 1 1 1 i
mb /(ha ), i 5 2, . . . , m. Hence p 5 1 1 N 1 N 1 ? ? ? 1 N < o b /(ha ), whichi i 1 2 m i51 i i

leads to a contradiction for p sufficiently large. We have thus proved (17). Since the
kqsequence hy j , [0, b] is bounded, by passing to a subsequence if necessary, one

kq ˜can assume that y → y. From (17) we then have

k kq qỹ 5 lim y 5 lim z . (20)
q→1` q→1`

q q ˜Since y [ C while z [ G for every q, this yields y [ C > G. Furthermore, since
q :¯u( y ) > g 5 maxhu( y) u y [ C > Gj, it follows from the upper semicontinuity of

˜ ˜ ˜¯ ¯u( y) that u(y ) > g, and hence, u(y ) 5 g. Thus y is an optimal solution of (MQ).
˜This completes the proof of the Proposition because by (20) y is also an

kaccumulation point of the sequence hz j. h

5. Discussion

(1) Each iteration of the above Algorithm involves solving an univariate equation
k11w(ay ) 5 1 (see (16)) and solving m convex programs (14) (for finding m new

k,ipoints y , i 5 1, . . . , m). To solve univariate equations like (16) the best method is
perhaps Bolzano’s bisection (see [8]). As for the convex programs (14), since they
differ only by the vector y, reoptimization techniques could be used to save
computational efforts and time, instead of starting from scratch for solving each of
them. Especially when these programs are linear (which is the case if D is
polyhedral and g(x) is affine), reoptimization techniques could be very efficient.

(2) To delete the improper elements of T (see (13)) note that, since V has nok11 k
k,i k k,iimproper element and y < z ;i, only some of the new elements y can be

improper for T . Therefore, all improper elements can be deleted in the followingk11
k kway: for every y [V check whether y > z , and whether y , y for a uniquek i i

kii [ h1, . . . , mj; if yes, then delete y . This procedure requires at most 2m(uV u 2 1)k

comparisons.
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(3) Even though at most m 2 1 new points may be added to V at each iteration,k

storage problems may arise because of the growth of V . To overcome the difficultyk

in this case, it is advisable to make a restart every time V is going to reach ak

critical size. Specifically, if L is the maximum size allowed for V , then Step 1 isk

modified as follows:
k k k¯ ¯Step 1. If u( y ) 2u(y ) < «, terminate: y is an «-optimal solutions. If uV u < L,k

kgo to Step 2. Otherwise, reset V 5 hbj, (i.e. P 5 [0, b]), y 5 b, and go to Step 2.k k
kIn this way, the algorithm is restarted from the polyblock [0, b]\(z , b].

(4) The above Algorithm can also be viewed as a special outer approximation
procedure, in which a nested sequence of polyblocks is constructed to approximate
the feasible set more and more closely. At every iteration of this procedure a set Tk

(vertex set of the current polyblock) has to be computed. However, while in standard
polyhedral outer approximation (OA) procedures, the vertex set of the current outer
approximating polytope exponentially grows in size and becomes more and more
difficult to compute accurately, the set T in the above Algorithm increases at mostk

by m at each iteration and its new elements are computed by extremely simple
formulas (see (12)). Furthermore, the function w( y) is assumed only to be
increasing. In view of these positive features, the Algorithm should be able to
handle problems of much larger size and of a larger class than standard OA
procedures. In particular, as applied to convex programs with additional multiplica-
tive constraint, it is expected to perform better than existing algorithms.

6. Illustrative Examples

To illustrate how the algorithm works we present some numerical examples. For the
sake of simplicity these examples as well as the test problems used in the
computational experiments to be discussed in the next section are taken in the form

m

max kc, xl u Mx < q, x > 0, P g (x) < 1 (21)H Di
i51

h3n hwhere M [ R , q [ R , and g (x), . . . , g (x) are affine functions, i.e. g(x) 51 m
m3n mEx 1 d with E [ R , d [ R .

EXAMPLE 1. Solve the problem:

max 2x 1 x1 2

s.t. x 1 x < 4, x < 2, x > 0, x > 0 ,1 2 1 1 2

(0.2x 2 0.1x 1 1.2)(0.1x 1 0.2x 1 0.3) < 11 2 1 2

For initialization we take

a 5 (0.800, 0.300) , b 5 (1.600, 1.100) , V 5 h(1.600, 1.100)j ,1
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Figure 1. Polyblock Approximation Algorithm.

Table 1
k k k k k k¯ ¯Iter y z 5 p( y ) CBS y u( y ) 2u(y ) New vertices

1 (1.600, 1.100) (1.206, 0.829) (1.206, 0.829) 1.354 (1.206, 1.100),
(1.600, 0.829)

2 (1.206, 1.100) (1.047, 0.955) (1.047, 0.955) 0.725 (1.047, 1.100)
(1.206, 0.955)

3 (1.047, 1.100) (0.976, 1.025) (0.976, 1.025) 0.375 (0.976, 1.100),
(1.047, 1.025)

4 (0.976, 1.100) (0.942, 1.062) (0.942, 1.062) 0.191 (0.942, 1.100),
(0.976, 1.062)

5 (0.942, 1.100) (0.925, 1.081) (0.925, 1.081) 0.096 (0.925, 1.100),
(0.942, 1.081)

6 (0.925, 1.100) (0.917, 1.090) (0.917, 1.090) 0.048 (0.917, 1.100),
(0.925, 1.090)

7 (0.917, 1.100) (0.913, 1.095) (0.913, 1.095) 0.024 (0.913, 1.100),
(0.917, 1.095)

8 (0.913, 1.100) (0.911, 1.098) (0.911, 1.098) 0.012 (0.911, 1.100),
(0.913, 1.098)

9 (0.911, 1.100) (0.910, 1.099) (0.910, 1.098) 0.006 (0.910, 1.100),
(0.911, 1.099)

10 (0.910, 1.100) (0.910, 1.099) (0.910, 1.099) 0.003 (0.910, 1.100),
(0.910, 1.099)

11 (0.910, 1.100) (0.909, 1.100) (0.909, 1.100) 0.002 (0.909, 1.100),
(0.910, 1.100)

12 (0.909, 1.100) (0.909, 1.100) (0.909, 1.100) 0.001
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1 1so y 5 (1.600, 1.100). The line through 0 and y intersects the upper boundary of
1 1 1the feasible region at the point z 5 (1.206, 0.829) and we have u( y ) 2u(z ) 5

1 1 11.354. The vertices of the rectangle [z , y ] which are adjacent to y are (1.206,
1.100) and (1.600, 0.829). Hence we have V 5 h(1.206, 1.100), (1.600, 0.829)j. In2

2 2the next step, we compute y 5 argmaxhu( y) u y [V j. Therefore, y 5 (1.206, 1.100)2

and so on. With a tolerance e 5 0.001 the algorithm terminates after 12 iterations,
yielding y 5 (0.909, 1.100) as an optimal solution of problem (MQ), and x 5opt opt

(0.000, 3.999) as an optimal solution of problem (Q), respectively. The computation
results for all iterations are summarized in Table 1.

EXAMPLE 2. Consider problem (21) with the following data:

15Vector c [ R :
c 5 (0.700, 0.500, 20.300, 0.400, 0.300, 20.900, 0.400, 20.100,

0.600, 0.600, 20.100, 0.000, 0.200, 0.400, 20.200) .

Matrix M (10 3 15):
26.30 3.30 4.20 6.50 9.40 21.80 8.00 5.40

22.20 6.30 1.80 22.10 29.90 27.90 24.00
9.50 28.10 21.30 6.80 26.20 24.60 23.60 29.60

0.00 5.30 4.10 23.10 0.00 25.70 4.30
3.60 22.70 23.70 7.90 5.10 27.80 25.90 2.50

8.40 2.50 2.10 28.60 4.50 22.10 9.30
20.70 6.80 23.80 2.10 23.20 3.70 7.60 4.70

29.50 9.00 24.10 29.10 7.30 9.10 6.70
22.00 22.70 25.00 6.30 28.90 2.10 2.60 24.80

2.60 3.90 8.10 23.30 4.30 27.50 25.10
23.90 7.60 0.80 7.40 23.80 24.00 2.60 2.40

26.30 1.80 5.00 20.30 6.20 0.70 27.40
0.40 28.30 9.90 5.40 28.00 7.50 1.40 7.80

24.30 9.50 20.10 20.60 4.10 23.90 1.70
20.80 1.20 5.10 27.90 6.20 27.00 22.60 25.20

5.20 2.50 23.20 26.60 7.60 26.70 7.50
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.30 6.20 25.10 25.20 1.50 1.00 24.20 3.20

2.20 23.40 3.80 1.40 23.10 8.60 26.20

10Vector q [ R :
q 5 (2.25, 8.20, 10.44, 15.37, 5.23, 12.19, 23.36, 1.70, 6.50, 25.82) .
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Matrix E (5 3 15):
20.18 0.160.190.060.1620.110.060.06

20.09 0.11 20.12 20.22 0.02 20.02 0.22
0.21 0.25 20.23 0.22 0.09 20.01 0.19 20.19

0.17 0.01 0.07 0.14 20.25 0.08 0.03
20.12 20.01 20.05 20.12 0.14 20.24 0.09 20.09

20.18 0.21 0.21 0.08 0.02 0.21 0.21
20.24 20.18 0.02 0.00 0.09 20.18 0.03 0.16

20.12 20.13 0.17 20.01 0.06 0.19 20.16
20.25 0.04 20.19 0.21 0.10 0.00 20.02 0.07

20.04 0.00 0.22 0.13 0.18 0.22 0.17

5Vector d [ R :
d 5 (1.19, 0.59, 0.99, 1.19, 0.96) .

To have an idea of the effect of using reoptimization techniques for solving the
subproblems (14) we solved the above example by two different implementation
versions of the Algorithms, one with incorporated reoptimization techniques for
linear programs and the other without. For a tolerance of 0.000001 and using a PC
computer Pentium II, the optimal value of 3.364 was found after 59 iterations,
requiring a total amount of time about 1.6 seconds by the first version, and 6.1
seconds by the second version. This shows that using reoptimization techniques may
substantially reduce the computational time. In fact, an important part of the
computational burden is due to the solution of these subproblems (m subproblems in
each iteration). Note, however, that although theoretically, the two procedures (with
or without reoptimization techniques) must provide the same optimal solution and
require the same number of iterations, in practice, the intermediary results may not
always coincide. These possible differences are due to the fact that the computing
errors may not be quite the same when solving a linear program from scratch and
when reoptimizing it from an optimal solution of a related linear program. For
instance, for the present example the two implementation versions of the Algorithm
gave two different optimal solutions

y 5 (1.954, 1.681, 0.876, 0.768, 0.453)opt

in the first version (with incorporated reoptimization techniques) and

y 5 (1.383, 1.686, 0.905, 1.046, 0.453)opt

in the other version.

7. Computational Experiments

The algorithm described in Section 5 for problem (21) was coded in Pascal language
and tested on a PC computer Pentium II.
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More than 200 tested problems were randomly generated, with different values of
n (number of variables), h (numbers of rows of M), and m (number of functions g ).i

For each given size 12 problems were generated. The experiments were carried out
on problems with m up to 10, and a tolerance of « 5 0.01 for the relative error of the
optimal value. The restart version of the algorithm was implemented, with L 5 500
for problems with m < 4 and L 5 1900 for problems with m . 4 (L being the

mmaximum size allowed for uV u, see Section 5). The procedure works basically in Rk

space (the number of vertices to be stored increases by m 2 1 at each iteration). The
computational burden depends essentially on the value of m, and much less on the
values of h and n which only determine the sizes of the linear programs to be solved

kfor computing u( y ).
The results of the experiments are reported in Table 2. Column Iter indicates the

maximum number of iterations, Rest: the maximum number of restarts and t: the
maximum computational time (in seconds), for the 12 tested problems of each size.

These results show that the method is quite practical even on conventional PC’s,
at least for solving problems with m < 10. A feature worth noticing is that even
though the number of iterations may seem unusually large in certain cases, the total
computational time is quite reasonable because each iteration involves few and
simple computations, and requires on the average no more than 0.7 seconds even for
problems with m 5 10.

We emphasize the role of reoptimization and restarting in the experiments
performed. As was mentioned in Section 6, the use of reoptimization technique for
solving the subproblems (14) enabled one to significantly reduce the computation

Table 2

Prob. h n m Iter Rest t (in seconds)

1–12 10 15 2 23 0 0.16
13–24 15 20 2 16 0 0.39
25–36 10 15 3 94 0 0.88
37–48 15 20 3 403 1 12.90
49–60 10 15 4 483 2 23.23
61–72 15 20 4 587 3 36.58
73–84 10 15 5 1110 2 489.66
85–96 15 20 5 608 1 338.24
97–108 10 15 6 1334 3 684.64

109–120 15 20 6 884 2 485.05
121–132 10 15 7 1202 3 621.37
133–144 15 20 7 1064 3 511.83
145–156 10 15 8 1067 4 617.15
157–168 15 20 8 2006 7 1250.10
169–180 10 15 9 1252 5 817.51
181–192 15 20 9 826 3 634.24
193–204 10 15 10 1538 7 938.67
205–216 15 20 10 1890 8 1307.40
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time. Also, many tested problems with m 5 10 could not have been solved
successfully (premature termination would have been necessary for these cases),
were the algorithm implemented without restart.

8. Conclusion

We have presented a new approach to a class of convex programs with an additional
monotonic constraint. This approach is based on the approximation of the level sets
of increasing functions by means of sets of a particular kind called ‘polyblocks’.
Results in this and the paper [8] have been further generalized in [10] to apply to a
broad class of nonconvex optimization problems described by means of increasing
functions and differences of increasing functions.
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